Equation of State Modeling: Lowering Barriers to Progress

Ralph Menikoff, T-14

- Constitutive relations are input for simulations
 Essential for predictive capability
 Higher resolution increases need for accuracy
 Example: HE & detonation waves
 meso-scale simulations of hotspot ignition
- EOS modeling is mature field
 A lot is known
 Engineering details are important
 Too much for any individual
 Need cooperative approach
- Technology available for closer cooperation
 Every researcher has dedicated workstation
 and connected to internet
 Share resources beyond journal articles
 Data and source code require standards
 Need consensus on format or language
 Any interest ?

Barriers to Progress

- Calibration of parameters
 Hand-crafted procedures
 Too labor intensive
 Need to be automated
- Documentation & Validation
 Is the domain specified ?

Are uncertainties in data specified?

Calibration procedure specified ?

Is sensitivity of model parameters specified?

Comparison with other experiments and models?

- How much effort would it be to reproduce ?
- Or to incorporate new experimental data?

Calibration is non-linear fit

Constraints: monotonicity & convexity

Complete EOS requires potential: e, F, G or H Need at least two derivatives

Current practice is too inefficient

- Duplication of effort
- Difficult to transfer improvements between codes
 Different EOS data structures and IO
 Lack of common tools
 Always short on manpower
- Difficult to reproduce results
- Difficult to compare models

Data files in different formats or not available Lack of automation

Codes not portable

Leads to low standards

Progress is slow
 Individuals starting from scratch
 rather than building on work of others
 and continually improving models

Need to share resources

Both information and tools

Take advantage of internet

Requires some standardization

Interchangeable components

Common software tools

Focus on <u>EOS package</u> as an example Design goals

- Treat different EOS models in uniform manner
 Enable different application to use exact same EOS
 Separate application from details of model
- Provide thermodynamic functions pressure, temperature, sound speed, etc.
- Provide high level functions
 Isentropes, shock loci, etc.
- Modular and flexible
 Easy to add new materials
 Easy to add new models
- Allow for proprietary or classified data
 Clean separation of general purpose and proprietary
- Extendible to other constitutive properties
- Portability

Type of EOS models

1. Sesame tables

Closest 'model' to standard

EOSpack interface (not always used)

Piece together models for wide range
smoothness, monotonicity & convexity constraints
table resolution & interpolation

2. Analytic models

Thermodynamically consistent
Ideal gas, stiffened gas, van der Waal
Incomplete EOS (limited domain of phase space)
Mie-Grüneisen, JWL, BKW, etc.

3. Semi-analytic models

Solve implicit equation Examples:

P & T equilibrium for mixture Equilibrium porous EOS

Best choice for particular application?

Depends on region of phase space of interest

Model Development

Build on existing models

Simple mixture rules

pressure and temperature equilibrium

Alloy

mixed cell EOS for Eulerian algorithm

Solid + Liquid

Melt curve from matching Gibbs free energy

Explosive

Reactants + products

Detonation Hugoniot as well as shock Hugoniot

Testing of new models

Check for consistency

For example, compare sound speed

from analytic formula

with generic finite difference routine

Compare with data & other models

Isotherms, Hugoniots, specific heats, etc.

Hydro Applications

More capabilities then evaluating pressure & sound speed

- Design & Analyse experiments
 Lead waves & impedance matches
 Same material models as in simulations
- Simplify input

Material names rather than specifying parameters Set initial state based on (P,T) or (V,e)Set state as point on Hugoniot

- Boundary conditions
- Loss of resolution & robustness issues
 Example, resolving discontinuities
 Impact problems resolved using Riemann solver
 Isentropes for centered rarefactions

Structure of EOS package

Database

Model parameters for materials

Number and meaning differ

Issue of validation & quality control

Account for units

Application Interface

Pointers to thermodynamic functions pressure, temperature, sound speed, etc Higher level functions for useful quantities Isotherms, Isentropes, Hugoniots etc.

Solution to impedance match problems

Low level routines

Fittings forms for different models
Initialization for specific model
Shared objects to implement particular models
Dynamically linked library
Enables package to be easily extended

Natural extension

Server for database and shared objects

Usage

1. Initialize database

Specify <u>name of file(s)</u>
Package reads database

2. Fetch EOS handle for each material

Call database function with <u>name of material</u>
Package loads needed library
and initializes EOS with parameters from database

3. Evaluate thermodynamic quantities

Through function calls, e.g., pressure(handle, V, e)

Trade-off

Treat all materials in same manner Level of indirectness

Package is extendible

- To add new material of known type
 Add parameters to database file
- To add new EOS type

Generate shared object with low level routines
Then add parameters to database file
No need to recompiling application

Software Engineering

Example of what can be done for hydro interface EOS plugin for James Quirk's AMRITA

```
http://t14web.lanl.gov/Staff/rsm/preprints.html#EOSpackage
http://t14web.lanl.gov/Staff/rsm/preprints.html#EOSlib
```

Parser for input

Purpose is to translate input from form that is convenient for user to form that code can easily handle

Setup for impedance match test problem

```
utilize EOS

set mat1 = EqPorous::estane
set mat2 = Hayes::HMX
set Ps = 3.1

def SolutionField
   getstate on right hugoniot($mat1) at P=$Ps -> W'left
   getmaterial $mat2 -> W'right
   setfield W'left X[] < $Nc
   setfield W'right X[] >= $Nc
end def
```

Advantages of input parser

Convenient and Less error prone

Material by name

code fetches parameters from database

Point on Hugoniot

code computes hydro state

Facilitates automation

Clearer and easier to change Programmable interface is more flexible Problem specific setup not hard wired

Long lived input files

Parser is interface

Can change implementation of hydro code

Same input file for different codes

Scripting language

Needs to be well thought out

Flexible and concise for common idioms

Parser for output

Comparison with theory

```
solve RiemannProblem(left_state, right_state) -> $label
OneDPlot {
 variable = $V[]
 xoffset #= -$Nc*$dx + $time*$left_u
 file_data = $label/$V.data
}
ProfileRiemannSolution {
  handle = $label
  var = $V
  t = $time
  x_1 = -Nc*dx
  x r #= $Nc*$dx
  dir
         = .
  plot = "$V.data" with points lt 1 pt 7 ps 1
}
```

Scripts facilitates reusable capabilities

OneDPlot to pick out numerical profile
ProfileRiemannSolution to generate theoretical profile

Case I: Two outgoing shocks

Comparison of numerical profiles and exact solution.

Case II: Reflected rarefaction and transmitted shock

Comparison of numerical profiles and exact solution.

Entropy Error

Case I

Case II

Wave Curves for Impedance Match Problems

Methodology

Long run — more efficient and easier for user

- Build-up library of script subroutines
 re-usable and programmable
 worthwhile to expend extra effort to do job well
- Simple idioms for common patterns of work
 Less labor intensive
 automated rather than hand crafted
 Allows for more thorough and systematic studies
 sensitivity studies to assess uncertainties
- Consistency

Same EOS routines to design experiments, simulate results and analyze data.

Comparing models

Vary only model or only hydro algorithm

Plot results on same scale or overlay two cases

To use new techniques effectively requires different style

Present style is too labor intensive Need to take advantage of computer power to automate and run simulations

Cooperative Approach

Common language or protocol

Interchangeable components

Specialized language tailored to hydro applications

Facilitates sharing of simulated results

Reproducibility, Comparisons & Portability

Language should outlive the hardware

Social issues

All models have strengths and weakness

Journal articles tend to lack balance

Skewed to advantages of new model

Driven in part by funding

More extensive testing of models is necessary

Models need to be readily accessible

Possible with internet

Mutually beneficial to share resources

Reward system

Sharing code only worthwhile if
Software well crafted
Documentation is provided
Software engineering
Needs to be recognized and encouraged